Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639739

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common cause of pulmonary hypertension (PH) worldwide and is strongly associated with adverse clinical outcomes. The American Heart Association recently highlighted a call to action regarding the distinct lack of evidence-based treatments for PH due to poorly understood pathophysiology of PH attributable to HFpEF (PH-HFpEF). Prior studies have described cardio-physiological mechanisms to explain the development of isolated postcapillary PH (ipc-PH); however, the consequent increased pulmonary vascular (PV) resistance (PVR) may lead to the less understood and more fatal combined pre- and postcapillary PH (cpc-PH). Metabolic disease and inflammatory dysregulation have been suggested to predispose cpc-PH, yet the molecular mechanisms are unknown. Although PH-HFpEF has been studied to partly share vasoactive neurohormonal mediators with primary pulmonary arterial hypertension (PAH), clinical trials that have targeted these pathways have been unsuccessful. The increased mortality of PH-HFpEF patients necessitates further study into viable mechanistic targets involved in disease progression. We aim to summarize the current pathophysiological and clinical understanding of PH-HFpEF, highlight the role of known molecular mechanisms in the progression of PV disease, and introduce a novel concept that lipid metabolism may be attenuating and propagating PH-HFpEF.

2.
PLoS Pathog ; 20(1): e1011280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271464

RESUMO

Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.


Assuntos
Peste , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/metabolismo , Peste/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Leucotrieno B4/metabolismo , Leucócitos/metabolismo , Inflamação , Proteínas de Bactérias/metabolismo
3.
Elife ; 122023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131691

RESUMO

The acute traumatic or surgical loss of skeletal muscle, known as volumetric muscle loss (VML), is a devastating type of injury that results in exacerbated and persistent inflammation followed by fibrosis. The mechanisms that mediate the magnitude and duration of the inflammatory response and ensuing fibrosis after VML remain understudied, and as such, the development of regenerative therapies has been limited. To address this need, we profiled how lipid mediators, which are potent regulators of the immune response after injury, varied with VML injuries that heal or result in fibrosis. We observed that non-healing VML injuries displayed increased pro-inflammatory eicosanoids and a lack of pro-resolving lipid mediators. Treatment of VML with a pro-resolving lipid mediator synthesized from docosahexaenoic acid, called Maresin 1, ameliorated fibrosis through reduction of neutrophils and macrophages and enhanced recovery of muscle strength. These results expand our knowledge of the dysregulated immune response that develops after VML and identify a novel immuno-regenerative therapeutic modality in Maresin 1.


Assuntos
Ácidos Docosa-Hexaenoicos , Doenças Musculares , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/patologia , Fibrose
4.
Pain ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37889581

RESUMO

ABSTRACT: Localized provoked vulvodynia is characterized by chronic vulvar pain that disrupts every aspect of the patient's life. Pain is localized to the vulvar vestibule, a specialized ring of tissue immediately surrounding the vaginal opening involved in immune defense. In this article, we show inflammation is the critical first step necessary for the generation of pain signals in the vulva. Inflammatory stimuli alone or combined with the transient receptor potential cation channel subfamily V member 4 (TRPV4) agonist 4α-phorbol 12,13-didecanoate stimulate calcium flux into vulvar fibroblast cells. Activity is blocked by the TRPV4 antagonist HC067047, denoting specificity to TRPV4. Using lipidomics, we found pro-resolving lipids in the vulvar vestibule were dysregulated, characterized by a reduction in pro-resolving mediators and heightened production of inflammatory mediators. We demonstrate specialized pro-resolving mediators represent a potential new therapy for vulvar pain, acting on 2 key parts of the disease mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling.

5.
J Pediatr ; 263: 113638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37517646

RESUMO

OBJECTIVE: To characterize phosphatidylcholine (PC) molecular species in serial gastric aspirates as biomarkers for lung maturity, delivery of aerosolized surfactant (AS), and need for intubation. METHODS: In a phase II clinical trial of aerosolized surfactant in preterm neonates with respiratory distress syndrome receiving noninvasive ventilation, infants received a maximum of 2 doses of nebulized beractant. Gastric aspirates were collected before and after each dose and were analyzed for PCs using liquid chromatography mass spectrometry. RESULTS: Of 149 infants enrolled, gastric aspirates were obtained before (n = 91) and after (n = 94) dose 1, and before (n = 56) and after (n = 57) dose 2 of nebulized beractant. The mean ± SD values of birthweight, gestational age, and age at collection of baseline gastric aspirate were 1.7 ± 0.6 kg, 31.7 ± 2.8 weeks, and 5.5 ± 1.7 hours, respectively. The most abundant PC in beractant and gastric aspirates was PC(16:0/16:0). Advancing gestational age and number of antenatal corticosteroid doses predicted increased gastric aspirate PC(16:0/16:0), whereas maternal diabetes predicted a decrease. Several PCs increased significantly (P < .05) after nebulized beractant, consistent with effective aerosol delivery. Infants who received intubation within 72 hours of birth were more likely to have lower PC(16:0/16:0) levels in baseline gastric aspirates compared with those who did not (P = .024). CONCLUSIONS: PC molecular species in gastric aspirates of preterm neonates are potentially novel and precise biomarkers to assess lung maturity, aerosol delivery, and need for endotracheal intubation.


Assuntos
Surfactantes Pulmonares , Síndrome do Desconforto Respiratório do Recém-Nascido , Gravidez , Recém-Nascido , Lactente , Humanos , Feminino , Tensoativos/uso terapêutico , Fosfatidilcolinas/uso terapêutico , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Lipoproteínas , Biomarcadores , Aerossóis e Gotículas Respiratórios
6.
Pharmacol Ther ; 248: 108467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285943

RESUMO

Localized provoked vulvodynia (LPV) affects ∼14 million people in the US (9% of women), destroying lives and relationships. LPV is characterized by chronic pain (>3 months) upon touch to the vulvar vestibule, which surrounds the vaginal opening. Many patients go months or years without a diagnosis. Once diagnosed, the treatments available only manage the symptoms of disease and do not correct the underlying problem. We have focused on elucidating the underlying mechanisms of chronic vulvar pain to speed diagnosis and improve intervention and management. We determined the inflammatory response to microorganisms, even members of the resident microflora, sets off a chain of events that culminates in chronic pain. This agrees with findings from several other groups, which show inflammation is altered in the painful vestibule. The vestibule of patients is acutely sensitive to inflammatory stimuli to the point of being deleterious. Rather than protect against vaginal infection, it causes heightened inflammation that does not resolve, which coincides with alterations in lipid metabolism that favor production of proinflammatory lipids and not pro-resolving lipids. Lipid dysbiosis in turn triggers pain signaling through the transient receptor potential vanilloid subtype 4 receptor (TRPV4). Treatment with specialized pro-resolving mediators (SPMs) that foster resolution reduces inflammation in fibroblasts and mice and vulvar sensitivity in mice. SPMs, specifically maresin 1, act on more than one part of the vulvodynia mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling. Therefore, SPMs or other agents that target inflammation and/or TRPV4 signaling could prove effective as new vulvodynia therapies.


Assuntos
Dor Crônica , Vulvodinia , Humanos , Feminino , Animais , Camundongos , Canais de Cátion TRPV , Inflamação , Lipídeos
7.
Cell Biochem Biophys ; 81(2): 205-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36820994

RESUMO

Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.


Assuntos
Antioxidantes , Fosfolipase D , Animais , Bovinos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fosforilação , Masoprocol/farmacologia , Masoprocol/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidantes , Células Endoteliais/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Inibidores Enzimáticos/metabolismo , Pulmão/metabolismo , Tirosina/farmacologia , Tirosina/metabolismo
8.
Life Res (Auckl) ; 5(2)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36341141

RESUMO

Hyperhomocysteinemia (HHcy) contributes to the incidence of many cardiovascular diseases (CVD). Our group have previously established crucial roles of eicosanoids and homocysteine in the incidence of vascular injury in diabetic retinopathy and renal injury. Using cystathionine-ß-synthase heterozygous mice (cßs+/-) as a model of HHcy, the current study was designed to determine the impact of homocysteine on circulating levels of lipid mediators derived from polyunsaturated fatty acids (PUFA). Plasma samples were isolated from wild-type (WT) and cßs+/- mice for the assessment of eicosanoids levels using LC/MS. Plasma 12/15-lipoxygenase (12/15-LOX) activity significantly decreased in cßs+/- vs. WT control mice. LOX-derived metabolites from both omega-3 and omega-6 PUFA were also reduced in cßs+/- mice compared to WT control (P < 0.05). Contrary to LOX metabolites, cytochrome P450 (CYP) metabolites from omega-3 and omega-6 PUFA were significantly elevated in cßs+/- mice compared to WT control. Epoxyeicosatrienoic acids (EETs) are epoxides derived from arachidonic acid (AA) metabolism by CYP with anti-inflammatory properties and are known to limit vascular injury, however their physiological role is limited by their rapid degradation by soluble epoxide hydrolase (sEH) to their corresponding diols (DiHETrEs). In cßs+/- mice, a significant decrease in the plasma EETs bioavailability was obvious as evident by the decrease in EETs/ DiHETrEs ratio relative to WT control mice. Cyclooxygenase (COX) metabolites were also significantly decreased in cßs+/- vs. WT control mice. These data suggest that HHcy impacts eicosanoids metabolism through decreasing LOX and COX metabolic activities while increasing CYP metabolic activity. The increase in AA metabolism by CYP was also associated with increase in sEH activity and decrease in EETs bioavailability. Dysregulation of eicosanoids metabolism could be a contributing factor to the incidence and progression of HHcy-induced CVD.

9.
Sci Rep ; 12(1): 17832, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284115

RESUMO

Various fatty acyl lipid mediators are derived from dietary polyunsaturated fatty acids (PUFAs) and modulate nociception. The modern diet is rich in linoleic acid, which is associated with nociceptive hypersensitivities and may present a risk factor for developing pain conditions. Although recommendations about fatty acid intake exist for some diseases (e.g. cardiovascular disease), the role of dietary fatty acids in promoting pain disorders is not completely understood. To determine how dietary linoleic acid content influences the accumulation of pro- and anti-nociceptive fatty acyl lipid mediators, we created novel rodent diets using custom triglyceride blends rich in either linoleic acid or oleic acid. We quantified the fatty acyl lipidome in plasma of male and female rats fed these custom diets from the time of weaning through nine weeks of age. Dietary fatty acid composition determined circulating plasma fatty acyl lipidome content. Exposure to a diet rich in linoleic acid was associated with accumulation of linoleic and arachidonic acid-derived pro-nociceptive lipid mediators and reduction of anti-nociceptive lipid mediators derived from the omega-3 PUFAs. Our findings provide mechanistic insights into exaggerated nociceptive hypersensitivity associated with excessive dietary linoleic acid intake and highlight potential biomarkers for pain risk stratification.


Assuntos
Eicosanoides , Ácido Linoleico , Masculino , Feminino , Ratos , Animais , Ácidos Graxos Insaturados , Ácidos Graxos , Dieta , Triglicerídeos , Ácido Oleico , Ácido Araquidônico , Dor , Gorduras na Dieta , Ácidos Linoleicos
10.
J Diabetes ; 14(4): 271-281, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35470585

RESUMO

BACKGROUND: This study profiles ceramides extracted from visceral and subcutaneous adipose tissue of human subjects by liquid chromatography-mass spectrometry to determine a correlation with status of diabetes and gender. METHODS: Samples of visceral and abdominal wall subcutaneous adipose tissue (n = 36 and n = 31, respectively) were taken during laparoscopic surgery from 36 patients (14 nondiabetic, 22 diabetic and prediabetic) undergoing bariatric surgery with a body mass index (BMI) >35 kg/m2 with ≥1 existing comorbidity or BMI ≥40 kg/m2 . Sphingolipids were extracted and analyzed using liquid chromatography-mass spectrometry. RESULTS: After logarithm 2 conversion, paired analysis of visceral to subcutaneous tissue showed differential accumulation of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in visceral tissue of prediabetic/diabetic female subjects, but not in males. Within-tissue analysis showed higher mean levels of ceramide species linked to insulin resistance, such as Cer(d18:1/18:0) and Cer(d18:1/16:0), in visceral tissue of prediabetic/diabetic patients compared with nondiabetic subjects and higher content of Cer(d18:1/14:0) in subcutaneous tissue of insulin-resistant female patients compared with prediabetic/diabetic males. Statistically significant differences in mean levels of ceramide species between insulin-resistant African American and insulin-resistant Caucasian patients were not evident in visceral or subcutaneous tissue. CONCLUSIONS: Analysis of ceramides is important for developing a better understanding of biological processes underlying type 2 diabetes, metabolic syndrome, and obesity. Knowledge of the accumulated ceramides/dihydroceramides may reflect on the prelipolytic state that leads the lipotoxic phase of insulin resistance and may shed light on the predisposition to insulin resistance by gender.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Estado Pré-Diabético , Tecido Adiposo/metabolismo , Ceramidas/metabolismo , Feminino , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Tela Subcutânea/metabolismo
11.
Biomedicines ; 10(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35327517

RESUMO

Airborne ultrafine particle (UFP) exposure is a great concern as they have been correlated to increased cardiovascular mortality, neurodegenerative diseases and morbidity in occupational and environmental settings. The ultrafine components of diesel exhaust particles (DEPs) represent about 25% of the emission mass; these particles have a great surface area and consequently high capacity to adsorb toxic molecules, then transported throughout the body. Previous in-vivo studies indicated that DEP exposure increases pro- and antioxidant protein levels and activates inflammatory response both in respiratory and cardiovascular systems. In cells, DEPs can cause additional reactive oxygen species (ROS) production, which attacks surrounding molecules, such as lipids. The cell membrane provides lipid mediators (LMs) that modulate cell-cell communication, inflammation, and resolution processes, suggesting the importance of understanding lipid modifications induced by DEPs. In this study, with a lipidomic approach, we evaluated in the mouse lung and cortex how DEP acute and subacute treatments impact polyunsaturated fatty acid-derived LMs. To analyze the data, we designed an ad hoc bioinformatic pipeline to evaluate the functional enrichment of lipid sets belonging to the specific biological processes (Lipid Set Enrichment Analysis-LSEA). Moreover, the data obtained correlate tissue LMs and proteins associated with inflammatory process (COX-2, MPO), oxidative stress (HO-1, iNOS, and Hsp70), involved in the activation of many xenobiotics as well as PAH metabolism (Cyp1B1), suggesting a crucial role of lipids in the process of DEP-induced tissue damage.

12.
J Nutr ; 152(7): 1783-1791, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35349683

RESUMO

BACKGROUND: Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES: The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS: Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS: Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS: A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.


Assuntos
Ácidos Graxos Ômega-3 , Adulto , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Humanos , Inflamação , Mediadores da Inflamação , Pessoa de Meia-Idade , Obesidade , Plasma
13.
Neurotoxicology ; 90: 10-18, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35217070

RESUMO

Manganism, the condition caused by chronic exposure to high levels of manganese, selectively targets the dopamine-rich basal ganglia causing a movement disorder with symptoms similar to Parkinson's disease. While the basis for this specific targeting is unknown, we hypothesize that it may involve complexation of Mn by dopamine derivatives. At micromolar concentrations, MnCl2 accelerates the two-equivalent redox cycling of a dopamine-derived benzothiazine (dopathiazine) by an order of magnitude. In the process, O2 is reduced to superoxide and hydrogen peroxide. This effect is unique to Mn and is not shared by Fe, Cu, Zn, Co, Ca or Mg. Notably, the effect of Mn requires the presence of inorganic phosphate, suggesting that phosphate may stabilize a Mn/catecholate complex, which reacts readily with O2. This or similar endogenous dopamine derivatives may exacerbate Mn-dependent oxidative stress accounting for the neurological selectivity of manganism.


Assuntos
Intoxicação por Manganês , Doença de Parkinson , Dopamina , Humanos , Manganês , Oxirredução
14.
Front Immunol ; 12: 691216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177951

RESUMO

Failure of resolution pathways in periodontitis is reflected in levels of specialized pro-resolving lipid mediators (SPMs) and SPM pathway markers but their relationship with the subgingival microbiome is unclear. This study aimed to analyze and integrate lipid mediator level, SPM receptor gene expression and subgingival microbiome data in subjects with periodontitis vs. healthy controls. The study included 13 periodontally healthy and 15 periodontitis subjects that were evaluated prior to or after non-surgical periodontal therapy. Samples of gingival tissue and subgingival plaque were collected prior to and 8 weeks after non-surgical treatment; only once in the healthy group. Metabololipidomic analysis was performed to measure levels of SPMs and other relevant lipid mediators in gingiva. qRT-PCR assessed relative gene expression (2-ΔΔCT) of known SPM receptors. 16S rRNA sequencing evaluated the relative abundance of bacterial species in subgingival plaque. Correlations between lipid mediator levels, receptor gene expression and bacterial abundance were analyzed using the Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) and Sparse Partial Least Squares (SPLS) methods. Profiles of lipid mediators, receptor genes and the subgingival microbiome were distinct in the three groups. The strongest correlation existed between lipid mediator profile and subgingival microbiome profile. Multiple lipid mediators and bacterial species were highly correlated (correlation coefficient ≥0.6) in different periodontal conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to healthy controls revealed that one bacterial species, Corynebacterium durum, and five lipid mediators, 5(S)6(R)-DiHETE, 15(S)-HEPE, 7-HDHA, 13-HDHA and 14-HDHA, were identified in both conditions. Comparing individual correlated lipid mediators and bacterial species in periodontitis before treatment to after treatment revealed that one bacterial species, Anaeroglobus geminatus, and four lipid mediators, 5(S)12(S)-DiHETE, RvD1, Maresin 1 and LTB4, were identified in both conditions. Four Selenomonas species were highly correlated with RvD1, RvE3, 5(S)12(S)-DiHETE and proinflammatory mediators in the periodontitis after treatment group. Profiles of lipid mediators, receptor gene and subgingival microbiome are associated with periodontal inflammation and correlated with each other, suggesting inflammation mediated by lipid mediators influences microbial composition in periodontitis. The role of correlated individual lipid mediators and bacterial species in periodontal inflammation have to be further studied.


Assuntos
Gengiva/metabolismo , Gengiva/microbiologia , Metabolismo dos Lipídeos , Metaboloma , Microbiota , Periodontite/metabolismo , Periodontite/microbiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Bactérias/genética , Feminino , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Receptores de Quimiocinas/genética , Receptores Acoplados a Proteínas G/genética , Receptores do Leucotrieno B4/genética , Adulto Jovem
15.
Aging Cell ; 20(6): e13393, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34075679

RESUMO

Specialized pro-resolving mediators actively limit inflammation and support tissue regeneration, but their role in age-related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography-tandem mass spectrometry and tested whether treatment with the pro-resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro-resolving mediators 8-oxo-RvD1, resolvin E3, and maresin 1, as well as many anti-inflammatory cytochrome P450-derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro-inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2 ) and 12-lipoxygenase (e.g., 12-hydroxy-eicosatetraenoic acid), but aged mice produced fewer markers of pro-resolving mediators including the lipoxins (15-hydroxy-eicosatetraenoic acid), D-resolvins/protectins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and maresins (14-hydroxy-docosahexaenoic acid). Similar absences of downstream pro-resolving mediators including lipoxin A4 , resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro-resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non-steroidal anti-inflammatory drugs.


Assuntos
Envelhecimento/fisiologia , Inflamação/metabolismo , Espectrometria de Massas/métodos , Metabolismo/fisiologia , Músculo Esquelético/metabolismo , Engenharia Tecidual/métodos , Animais , Humanos , Camundongos
16.
FASEB J ; 35(6): e21655, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042218

RESUMO

Tendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse-induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography-tandem mass spectrometry in response to synergist ablation-induced plantaris tendon overuse. Sixty-four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post-surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation-related genes, and increased intratendinous concentrations of the pro-inflammatory eicosanoids thromboxane B2 and prostaglandin E2 . By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2 , F2α , and I2 . Specialized pro-resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D-resolvins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and lipoxins (15-hydroxy-eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti-inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy-eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro-inflammatory eicosanoids and a relative lack of specialized pro-resolving lipid mediators.


Assuntos
Tendão do Calcâneo/patologia , Mediadores da Inflamação/metabolismo , Inflamação/patologia , Lipídeos/análise , Metaboloma , Traumatismos dos Tendões/patologia , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Animais , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismos dos Tendões/etiologia , Traumatismos dos Tendões/metabolismo
17.
J Pain ; 22(10): 1195-1209, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33813057

RESUMO

Localized provoked vulvodynia (LPV) is the most common cause of chronic dyspareunia in premenopausal women, characterized by pain with light touch to the vulvar vestibule surrounding the vaginal opening. The devastating impact of LPV includes sexual dysfunction, infertility, depression, and even suicide. Yet, its etiology is unclear. No effective medical therapy exists; surgical removal of the painful vestibule is the last resort. In LPV, the vestibule expresses a unique inflammatory profile with elevated levels of pro-nociceptive proinflammatory mediators prostaglandin E2 (PGE2) and interleukin-6 (IL-6), which are linked to lower mechanical sensitivity thresholds. Specialized pro-resolving mediators (SPMs), lipids produced endogenously within the body, hold promise as an LPV treatment by resolving inflammation without impairing host defense. Ten of 13 commercially available SPMs reduced IL-6 and PGE2 production by vulvar fibroblasts, administered either before or after inflammatory stimulation. Using a murine vulvar pain model, coupling proinflammatory mediator quantification with mechanical sensitivity threshold determination, topical treatment with the SPM, maresin 1, decreased sensitivity and suppressed PGE2 levels. Docosahexaenoic acid, a precursor of maresin 1, was also effective in reducing PGE2 in vulvar fibroblasts and rapidly restored mouse sensitivity thresholds. Overall, SPMs and their precursors may be a safe and efficacious for LPV. Perspective: Vulvodynia, like many pain conditions, is difficult to treat because disease origins are incompletely understood. Here, we applied our knowledge of more recently discovered vulvodynia disease mechanisms to screen novel therapeutics. We identified several specialized pro-resolving mediators as likely potent and safe for treating LPV with potential for broader application.


Assuntos
Dinoprostona , Ácidos Docosa-Hexaenoicos/farmacologia , Fibroblastos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Interleucina-6 , Nociceptividade/efeitos dos fármacos , Vulvodinia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Camundongos
18.
Sci Rep ; 11(1): 3047, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542362

RESUMO

Arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) derived lipids play key roles in initiating and resolving inflammation. Neuro-inflammation is thought to play a causal role in perioperative neurocognitive disorders, yet the role of these lipids in the human central nervous system in such disorders is unclear. Here we used liquid chromatography-mass spectrometry to quantify AA, DHA, and EPA derived lipid levels in non-centrifuged cerebrospinal fluid (CSF), centrifuged CSF pellets, and centrifuged CSF supernatants of older adults obtained before, 24 h and 6 weeks after surgery. GAGE analysis was used to determine AA, DHA and EPA metabolite pathway changes over time. Lipid mediators derived from AA, DHA and EPA were detected in all sample types. Postoperative lipid mediator changes were not significant in non-centrifuged CSF (p > 0.05 for all three pathways). The AA metabolite pathway showed significant changes in centrifuged CSF pellets and supernatants from before to 24 h after surgery (p = 0.0000247, p = 0.0155 respectively), from before to 6 weeks after surgery (p = 0.0000497, p = 0.0155, respectively), and from 24 h to 6 weeks after surgery (p = 0.0000499, p = 0.00363, respectively). These findings indicate that AA, DHA, and EPA derived lipids are detectable in human CSF, and the AA metabolite pathway shows postoperative changes in centrifuged CSF pellets and supernatants.


Assuntos
Fatores Imunológicos/líquido cefalorraquidiano , Metabolismo dos Lipídeos/imunologia , Lipídeos/imunologia , Transtornos Neurocognitivos/genética , Idoso , Idoso de 80 Anos ou mais , Ácido Araquidônico/líquido cefalorraquidiano , Ácido Araquidônico/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/líquido cefalorraquidiano , Ácidos Docosa-Hexaenoicos/imunologia , Ácido Eicosapentaenoico/líquido cefalorraquidiano , Ácido Eicosapentaenoico/imunologia , Feminino , Humanos , Fatores Imunológicos/imunologia , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Lipídeos/líquido cefalorraquidiano , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Transtornos Neurocognitivos/líquido cefalorraquidiano , Transtornos Neurocognitivos/imunologia , Transtornos Neurocognitivos/patologia , Medicina Perioperatória
19.
Nutrients ; 13(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445698

RESUMO

Multicomponent lipid emulsions are available for critical care of preterm infants. We sought to determine the impact of different lipid emulsions on early priming of the host and its response to an acute stimulus. Pigs delivered 7d preterm (n = 59) were randomized to receive different lipid emulsions for 11 days: 100% soybean oil (SO), mixed oil emulsion (SO, medium chain olive oil and fish oil) including 15% fish oil (MO15), or 100% fish oil (FO100). On day 11, pigs received an 8-h continuous intravenous infusion of either lipopolysaccharide (LPS-lyophilized Escherichia coli) or saline. Plasma was collected for fatty acid, oxylipin, metabolomic, and cytokine analyses. At day 11, plasma omega-3 fatty acid levels in the FO100 groups showed the highest increase in eicosapentaenoic acid, EPA (0.1 ± 0.0 to 9.7 ± 1.9, p < 0.001), docosahexaenoic acid, DHA (day 0 = 2.5 ± 0.7 to 13.6 ± 2.9, p < 0.001), EPA and DHA-derived oxylipins, and sphingomyelin metabolites. In the SO group, levels of cytokine IL1ß increased at the first hour of LPS infusion (296.6 ± 308 pg/mL) but was undetectable in MO15, FO100, or in the animals receiving saline instead of LPS. Pigs in the SO group showed a significant increase in arachidonic acid (AA)-derived prostaglandins and thromboxanes in the first hour (p < 0.05). No significant changes in oxylipins were observed with either fish-oil containing group during LPS infusion. Host priming with soybean oil in the early postnatal period preserves a higher AA:DHA ratio and the ability to acutely respond to an external stimulus. In contrast, fish-oil containing lipid emulsions increase DHA, exacerbate a deficit in AA, and limit the initial LPS-induced inflammatory responses in preterm pigs.


Assuntos
Ácidos Graxos/sangue , Óleos de Peixe/farmacologia , Interleucina-1beta/sangue , Lipopolissacarídeos/toxicidade , Oxilipinas/sangue , Animais , Animais Recém-Nascidos , Emulsões , Óleos de Peixe/farmacocinética , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Infusões Parenterais , Suínos
20.
Atherosclerosis ; 316: 90-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303222

RESUMO

BACKGROUND AND AIMS: The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. METHODS: After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. RESULTS: Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. CONCLUSIONS: EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3 , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Ácido Eicosapentaenoico , Feminino , Humanos , Inflamação , Masculino , Monócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...